Local and Global Interpolation Inequalities on the Folland-stein Sobolev Spaces and Polynomials on Stratified Groups

نویسندگان

  • Guozhen Lu
  • GUOZHEN LU
چکیده

We derive both local and global Sobolev interpolation inequalities of any higher orders for the Folland-Stein Sobolev spaces on stratified nilpotent Lie groups G and on domains satisfying a certain chain condition. Weighted versions of such inequalities are also included for doubling weights satisfying a weighted Poincaré inequality. This paper appears to be the first one to deal with general Sobolev interpolation inequalities for vector fields on Lie groups; Despite the extensive research for Poincaré type inequalities for vector fields over the years, interpolation inequalities given here even in the nonweighted case appear to be new. Such interpolation inequalities have important applications to subelliptic or parabolic pde’s involving vector fields. The main tools to prove such inequalities are approximating the functions by polynomials on G . Some very useful properties for projections of polynomials associated with the functions are given here and they appear to have independent interests in their own rights. Main ideas of the proofs of the theorems are explained here. Detailed proofs of the results presented here are given in the paper “Polynomials on stratified groups and Sobolev interpolation inequalities on nonisotropic Folland-Stein spaces” by the author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation Inequalities in Weighted Sobolev Spaces

In this paper we prove some interpolation inequalities between functions and their derivatives in the class of weighted Sobolev spaces defined on unbounded open subset Ω ⊂ Rn .

متن کامل

Maximal inequalities for dual Sobolev spaces W − 1 , p and applications to interpolation

We firstly describe a maximal inequality for dual Sobolev spaces W−1,p. This one corresponds to a “Sobolev version” of usual properties of the Hardy-Littlewood maximal operator in Lebesgue spaces. Even in the euclidean space, this one seems to be new and we develop arguments in the general framework of Riemannian manifold. Then we present an application to obtain interpolation results for Sobol...

متن کامل

Abstract Hardy-Sobolev spaces and interpolation

Hardy-Sobolev spaces and interpolation N. Badr Institut Camille Jordan Université Claude Bernard Lyon 1 UMR du CNRS 5208 F-69622 Villeurbanne Cedex [email protected] F. Bernicot Laboratoire de Mathématiques Université de Paris-Sud UMR du CNRS 8628 F-91405 Orsay Cedex [email protected] October 19, 2010 Abstract The purpose of this work is to describe an abstract theory of Ha...

متن کامل

Relative rearrangement and interpolation inequalities

We prove here that the Poincaré-Sobolev pointwise inequalities for the relative rearrangement can be considered as the root of a great number of inequalities in various sets not necessarily vector spaces. In particular, new interpolation inequalities can be derived. Reordenamiento relativo y desigualdades de interpolación Resumen. Mostramos que las desigualdades puntuales de Poincaré-Sobolev pa...

متن کامل

Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs

Let Γ be a graph endowed with a reversible Markov kernel p, and P the associated operator, defined by Pf(x) = ∑ y p(x, y)f(y). Denote by ∇ the discrete gradient. We give necessary and/or sufficient conditions on Γ in order to compare ‖∇f‖p and ∥(I − P )f ∥∥ p uniformly in f for 1 < p < +∞. These conditions are different for p < 2 and p > 2. The proofs rely on recent techniques developed to hand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997